
Python Basic Course
 Part I

Stefano Alberto Russo

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Why should you listen to me?
An hybrid profile: BSc in Computer Science + MSc in Computational Physics

Started at CERN, as research fellow working on data analysis & Big Data

Then, 5 years in startups.

- Core team member of an IoT energy metering and analytics startup,

- Joined Entrepreneur First, Europe’s best deep tech startup accelerator

Now back into research:
- INAF and UniTS, working on resource-intensive data analysis

- adjunct prof. of computer science at University of Trieste (Python)

- plus, experienced consultant for a number of private companies

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Introduction

The course is structured to give you both:

- an overview of Python

- an approach to programming in general

This course does not aim at being exhaustive: we will leave out several topics.

Instead, the idea is to give you the approach and basics to let you go more in
deep by yourself when you will need it!

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

The deal

1) Let’s try to keep it interactive.

2) Always interrupt if you have question, doubts, curiosities.

3) Try to carry out the exercises, or at least to sketch them.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Course structure

1h30m Lecture (part I)

30m Exercise

15m Break

1h15m Lecture (part II)

30’ Exercise

1h30m Lecture (part III)

30m Exercise

15m Break

1h15m Lecture (part IV)

30’ Exercise

4h 4h

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

● Part I: introduction and basics
○ What is Python
○ Tools and “hello world”
○ Basic syntax and data types

■ assignments, types and operators
■ conditional blocks and loops

● Part II: architecture
○ Functions
○ Scope
○ Built-ins
○ Modules

Outline
● Part IV: manipulating data

○ List operations
○ String operations
○ Dealing bad data
○ Reading and writing files

● Part VI: Pandas
○ Series and Dataframes
○ Common operations
○ How to read documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Outline
● Part I: introduction and basics

○ What is Python
○ Tools and “hello world”
○ Basic syntax and data types

■ assignments, types and operators
■ conditional blocks and loops

● Part II: architecture
○ Functions
○ Scope
○ Built-ins
○ Modules

● Part IV: manipulating data
○ List operations
○ String operations
○ Dealing bad data
○ Reading and writing files

● Part VI: Pandas
○ Series and Dataframes
○ Common operations
○ How to read documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

What is Python
→ An interpreted language

- Python is an interpreted language. This means that it does not need to be “compiled”
into a machine language to be executed, like C, C++ or Fortran.

- Instead, Python code is directly “interpreted” and executed by the computer.

- For this reason, Python is much easier to use, in particular at the beginning and in
general for interactive tasks.

- Python is also very powerful and has an enormous ecosystem of packages and libraries
built around it.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

What is Python
→ A constantly growing language

- Python adoption is constantly growing. Even if there are programming languages which
might be “better” (e.g. Rust, Go), Python is still one of the most used ones.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

What is Python
→ The language of the data science and A.I.

- Python is the “de facto” standard language for data science and Artificial Intelligence,
with an extensive ecosystem of numerical and data analysis libraries.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

What is Python
→ A nearly pseudocode language

- Pseudocode is a form of abstract coding which allows to focus on the goal instead of
the implementation details. There are no standards for the pseudocode, it is up to you.

given a list of numbers containing 13,4,51,8

for each element in the list:
 if the element is lower than 5:
 print the element

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

What is Python
→ A nearly pseudocode language

- Python allows to write code which is close to pseudocode. This allows to focus on its
logic instead of getting lost in implementation details, and greatly improves readability.

 number_list = [13,4,51,8]

 for element in number_list:
 if element < 5:
 print(element)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

- Repl is a browser-based mini IDE (Integrated Development Environment)

- Repl (actually REPL) stands for Read, Evaluate and Print Loop.

- Provides a code editor, a shell, a console, and even versioning integration

- Every “Repl” is a micro-computer in the Cloud based on Linux

- Free to use for public “Repls”

→ create an account now if you haven’t already

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Repl.it

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Autograding.xyz

- A simple web application to evaluate your code

- No signup required

- Requires you to download from Repl.it the file you are working on and then
upload it on Autograding.xyz to get the score

- You will use it for evaluating your exercises and see how you did

- Try it now with the “Hello world!” (beware capital letters)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Autograding.xyz

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Tools and “hello world”
→ Autograding.xyz

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Let’s start

- We will now start digging into the basic syntax and data types of Python

- It is assumed some familiarity with imperative programming

- variables
- if-then statements
- for and while loops
- etc.

- However, we start taking nearly no other assumptions on your knowledge

- A good support tutorial is available here, if you get lost:
https://www.w3schools.com/python/default.asp

https://www.w3schools.com/python/default.asp

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ The print function

- The print() function allows to “print” something on the console or the shell. We
saw it in the “Hello world” example, but I can also print variables:

my_var = 1

print(my_var)

my_var = 1

print('My variable: {}'.format(my_var))

- To print a mix of text and variables, I can use the format() function:

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Assignments

- In Python, variables are assigned with the equal sign:

my_var = 1 # Example of an integer type variable

my_var = 1.1 # Example of a floating point type variable

my_var = 'ciao' # Example of a string type variable

my_var = True # Example of a boolean type variable

my_var = None # Example of an "undefined" variable

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Assignments

- In Python, variables are assigned with the equal sign:

my_var = 1 # Example of an integer type variable

my_var = 1.1 # Example of a floating point type variable

my_var = 'ciao' # Example of a string type variable

my_var = True # Example of a boolean type variable

my_var = None # Example of an "undefined" variable

Comments are inserted with the “hash”
character. Everything following an hash
is treated as a comment.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- Python does not require to explicitly set the variable type.

my_var = 1 # Example of an integer type variable

my_var = 1.1 # Example of a floating point type variable

my_var = 'ciao' # Example of a string type variable

my_var = True # Example of a boolean type variable

my_var = None # Example of an "undefined" variable

→ This feature is called “dynamic typing”

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- The philosophy of Python with respect to data types follows the “Duck typing”
paradigm: if it walks like a duck and it quacks like a duck, then it must be a duck.

my_var = 1 # Integer

my_other_var = 1.1 # Float

my_var + my_other_var # Computes 2.1

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- Python supports other two more advanced classes of data types:

my_list = [1,2,'ciao'] # List (array)

my_tuple = (1,2,7.28,None) # Tuple, unchangeable

→ Dictionaries are never ordered!
(unless you use a special OrderedDict type)

my_dict = {'name': 'John', 'age': 43} # Dictionary (key-value)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- Accessing array-like data types (lists and tuples):

my_list = [1,2,'ciao'] # List (array)

my_tuple = (1,2,7.28,None) # Tuple, unchangeable

my_list[0] # Returns the element in position zero

my_list.pop() # Removes and return the last list element

my_list.append(8) # Adds an element at the end of the list

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- Accessing array-like data types (dictionaries):

my_dict = {'name': 'John', 'age': 43} # Dictionary (key-value)

my_dict['name'] # Returns the value of the name key (John)

my_dict['age'] = 56 # Changes the value of the "age" key to 56

my_dict['role'] = 'PM' # Creates a new key "role" with value "PM"

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Types

- Nested types example: list of dictionaries

persons = [{'name': 'John', 'age': 43},

 {'name': 'Zoe', 'age': 31},

 {'name': 'Steve', 'age': 65}]

persons[1] # Returns {'name': 'Zoe', 'age': 31}

persons[1]['name'] # Returns 'Zoe'

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

- Python supports all the standard comparison operators:

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

- Python supports all the standard “numerical” operators as well:

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

- But keep in mind that these are extended to work with much many types

→ example: can I sum two strings?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

- Also the classic and, or and not logical operators are supported:

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

- Python provides other interesting operators when it comes to array-like types:

Note: for the dictionaries, the inclusion (in) check is done on the keys

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Operators

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Conditional blocks

- Conditional blocks are handled in Python with indentation:

if (my_var > your_var):

 print("My var is bigger than yours")

 if (my_var - your_var) <= 1:

 print("...but not so much")

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Conditional blocks

- Conditional blocks are handled in Python with indentation:

if (my_var > your_var):

 print("My var is bigger than yours")

 if (my_var - your_var) <= 1:

 print("...but not so much")

4 spaces

8 spaces
(4+4)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Conditional blocks

- Conditional blocks allow for more conditions with the “elif” statement:

if (my_var > your_var):

 print("My var is bigger than yours")

 if (my_var-your_var) <= 1:

 print("...but not so much")

 elif (my_var-your_var) <= 5:

 print("...quite a bit")

 else:

 print("...a lot")

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Loops

- Python support the classic for and while loops:

for i in range(10):

 print(i) # Prints 0 1 2 3 ... 9

i = 0

while i < 10:

 print(i) # Prints 0 1 2 3 ... 9

 i = i+1

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Loops

- However, it make things much easier when it comes to iterate:

my_list = [1,2,3]

for i in range(len(my_list)):

 print(my_list[i])

my_list = [1,2,3]

for item in my_list:

 print(item)

vs.

- Using the style on the left means to be “pythonic”.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Loops

- The “for” loop supports any iterable data type: this is the duck typing concept.

my_dict = {'a':1,'b':2}

for key in my_dict:

 print(key)

my_string = 'ciao'

for char in my_string:

 print(char)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Loops

- Some iterations are made easier by some helper functions:

my_list = [1,2,3]

for i, item in enumerate(my_list):

 print('Position #{}: element "{}"'.format(i, item))

my_dict = {'a':1,'b':2}

for key, value in my_dict.items():

 print('Key "{}": value "{}"'.format(key, value))

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Basic syntax and data types
→ Loops

- Some iterations are made easier by some helper functions:

my_list = [1,2,3]

for (i, item) in enumerate(my_list):

 print('Position #{}: element "{}"'.format(i, item))

my_dict = {'a':1,'b':2}

for (key, value) in my_dict.items():

 print('Key "{}": value "{}"'.format(key, value))

This is
a tuple

This is
a tuple

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

End of part I
→ Questions?

Next: exercise 1

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Exercise 1
Write a code that prints, for each month of the year, its number, its name
and how many days it contains.

- The output format must be:

- We assume a February of 28 days

1: January, 31

2: February, 28

...

12: December, 31

